Spatio-Temporal PM2.5 Forecasting in Thailand Using Encoder-Decoder Networks
نویسندگان
چکیده
PM2.5 is a type of particulate matter that contributes to air pollution in Thailand on yearly cycle. Exposure can cause acute health problems, including respiratory and cardiovascular diseases, as well an increased risk premature death. In this paper, we present spatio-temporal model based deep learning approach for concentration prediction via image-like at country-wide level. Our model: SimVP-CFLL-ML video model, called "SimVP". To enhance its performance when attempting predict high concentration, SimVP includes two major improvements i.e. cross-feature layer (CFLL) using 1x1 convolution learn feature correlation masking (ML) calculate loss specific locations. The experiment conducted data collected from the control department (PCD) sensor all (SFA). Results show our outperforms baselines. model’s F1 perforance 3.51% better than best baseline classifying class.
منابع مشابه
Wind speed forecasting using spatio-temporal indicators
Abstract. From small farms to electricity markets the interest and importance of wind power production is continuously increasing. This interest is mainly caused by the fact that wind is a continuous resource of clean energy. To take full advantage of the potential of wind power production it is crucial to have tools that accurately forecast the expected wind speed. However, forecasting the win...
متن کاملTraffic Flow Forecasting Using a Spatio-temporal Bayesian Network Predictor
A novel predictor for traffic flow forecasting, namely spatiotemporal Bayesian network predictor, is proposed. Unlike existing methods, our approach incorporates all the spatial and temporal information available in a transportation network to carry our traffic flow forecasting of the current site. The Pearson correlation coefficient is adopted to rank the input variables (traffic flows) for pr...
متن کاملCrime Forecasting Using Spatio-temporal Pattern with Ensemble Learning
Crime forecasting is notoriously difficult. A crime incident is a multi-dimensional complex phenomenon that is closely associated with temporal, spatial, societal, and ecological factors. In an attempt to utilize all these factors in crime pattern formulation, we propose a new feature construction and feature selection framework for crime forecasting. A new concept of multi-dimensional feature ...
متن کاملLong-Term Mobile Traffic Forecasting Using Deep Spatio-Temporal Neural Networks
Forecasting with high accuracy the volume of data traffic that mobile users will consume is becoming increasingly important for precision traffic engineering, demand-aware network resource allocation, as well as public transportation. Measurements collection in dense urban deployments is however complex and expensive, and the post-processing required to make predictions is highly non-trivial, g...
متن کاملfault location in power distribution networks using matching algorithm
چکیده رساله/پایان نامه : تاکنون روشهای متعددی در ارتباط با مکان یابی خطا در شبکه انتقال ارائه شده است. استفاده مستقیم از این روشها در شبکه توزیع به دلایلی همچون وجود انشعابهای متعدد، غیر یکنواختی فیدرها (خطوط کابلی، خطوط هوایی، سطح مقطع متفاوت انشعاب ها و تنه اصلی فیدر)، نامتعادلی (عدم جابجا شدگی خطوط، بارهای تکفاز و سه فاز)، ثابت نبودن بار و اندازه گیری مقادیر ولتاژ و جریان فقط در ابتدای...
ذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2023
ISSN: ['2169-3536']
DOI: https://doi.org/10.1109/access.2023.3293398